Note

Binomialfordeling


Binomialfordelingen en diskret fordeling indenfor statistik. En binomialfordelingen består af flere bernoulliforsøg, som alle har den samme uafhængige sandsynlige. Derfor kan binomialfordelingen betrages som sandsynligheden for k succeser ud af n mulige, da et bernoulliforsøg kun har to mulige udfald, nemlig succes og ikke succes (også kaldt fiasko). En binomialfordelt variabel Y betegnes med: .

Formler


Til en binomialfordeling er der knyttet forskellige formler, som beskrevet i dette afsnit.

n: Antallet af værdier i datasættet.
y: Det udfald som sandsynligheden skal bestemmes for.
p: Sandsynligheden for hvert udfald.

Sandsynlighed

Sandsynligheden for et bestemt udfald, kan beregnes med nedenstående tæthedsfunktion.



Middelværdi

Middelværdien (også kendt som forventningsværdien) for en binomialfordeling kan bestemmes med nedenstående udtryk.



Varians og standardafvigelse

Variansen og standardafvigelsen (også kendt som spredningen) kan bestemmes med nedenstående udtryk.

Varians


Standardafvigelse


Normalfordelingsapproksimation

For et binomialfordelt datasæt med mange elementer kan man, ud af fra den centrale grænseværdisætning, benytte en approksimation til en normalfordeling. I praktisk anvendelse siger man, at denne approksimation kan benyttes hvis både np og n(1-p) er mindst 10. I udtrykket herunder er den såkaldte fordelingsfunktion, som er gældende for en normalfordeling.




Sidens indhold er licenseret under Creative Commons BY-NC 2.5 Licensen. Så længe sidens indhold ikke benyttes til kommercielle formål, må du ændre og dele sidens indhold som du har lyst. Hvis du benytter sidens indhold andre steder på nettet eller videregiver sidens indhold i trykt form, skal forfatteren krediteres enten med navn eller link til denne side.

Siden blev genereret på 5 ms og der blev foretaget 1 databaseforespørgsler.